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Abstract

The harmonic balance method is used to construct approximate frequency–amplitude relations and periodic solutions to

the relativistic oscillator. By combining linearization of the governing equation with the harmonic balance method, we

construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the

nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a

form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete

range of oscillation amplitudes, A, while the discrepancy between the second approximate frequency and the exact one

never exceeds 0.82% and tends to 0.52% when A tends to infinity. Excellent agreement of the approximate frequencies and

periodic solutions with the exact ones are demonstrated and discussed.

r 2007 Elsevier Ltd. All rights reserved.
The simple harmonic oscillator and its extension to the relativistic case are important in physics because
they are usually employed as the basis for analyzing more complicated motion. When the energy of a
simple harmonic oscillator is such that the velocities become relativistic, the simple harmonic motion
(linear oscillations) at low energy becomes anharmonic (nonlinear oscillations) at high energy [1]; hence the
parentheses around the ‘‘an’’ in the title of this paper. Then, the strength of the nonlinearity increases
as the total relativistic energy increases, and at the non-relativistic limit the oscillator becomes linear. Synge [2]
gave an exact expression for the period in terms of an integral that Goldstein [3] identified as being
expressible in terms of elliptical integrals. Mickens [4] showed that all the solutions to the relativistic
(an)harmonic oscillator are periodic and determined a method for calculating analytical approximations
to its solutions. Mickens considered the first-order harmonic balance method, but we think he did not apply
the technique correctly and the analytical approximate frequency he obtained is not the correct one.
The purpose of this paper is to determine the high-order periodic solutions to the relativistic oscillator
by applying the harmonic balance method [5–14]. To do this, we use the analytical approach developed
by Lim and Wu [6,7] in which linearization of the governing equation is combined with the harmonic
balance method.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The governing non-dimensional nonlinear differential equation of motion for the relativistic oscillator is [4]

d2x

dt2
þ 1�

dx

dt

� �2
" #3=2

x ¼ 0, (1)

where x and t are dimensionless variables. The even power term in Eq. (1), (dx/dt)2, acts like the powers of
coordinates in that it does not cause a damping of the amplitude of oscillations with time. Therefore, Eq. (1) is
an example of a generalized conservative system [5]. At the limit when (dx/dt)251 Eq. (1) becomes
(d2x/dt2)+xE0 the oscillator is linear and the proper time t becomes equivalent to the coordinate time t to
this order.

Introducing the phase space variable (x,y), Eq. (1) can be written in the system form

dx

dt
¼ y;

dy

dt
¼ �ð1� y2Þ

3=2x (2)

and the trajectories in phase space are given by solutions to the first order, ordinary differential equation

dy

dx
¼ �
ð1� y2Þ

3=2x

y
. (3)

As Mickens pointed out, since the physical solutions of both Eqs. (1) and (3) are real, the phase space has a
‘‘strip’’ structure [4], i.e.,

�1oxoþ1; �1oyoþ 1. (4)

Then unlike the usual non-relativistic harmonic oscillator, the relativistic oscillator is bounded in the y

variable. This is due to the fact that the dimensionless variable y is related with the relativistic parameter
b ¼ v/c, where v is the velocity of the particle and c the velocity of light. In the relativistic case, the condition
�cov(t)o+c must be met, and so we obtain �1oy(t)o+1. Mickens proved that all the trajectories to
Eq. (3) are closed in the open region of phase space given by Eq. (4) and then all the physical solutions to
Eq. (1) are periodic. However, unlike the usual (non-relativistic) harmonic oscillator, the relativistic
(an)harmonic oscillator contains higher-order multiples of the fundamental frequency [4].

The harmonic balance method can now be applied to obtain analytic approximations to the periodic
solutions of Eq. (1). We make a change of variable, y-u, such that

�1ouoþ1. (5)

The required transformation is [4]

y ¼
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p (6)

and the corresponding second-order nonlinear differential equation for u is

d2u

dt2
þ

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2
p ¼ 0. (7)

We consider the following initial conditions in Eq. (7):

uð0Þ ¼ B and
du

dt
ð0Þ ¼ 0. (8)

Eq. (7) is an example of a conservative nonlinear oscillatory system in which the restoring force has an
irrational form. All the motions corresponding to Eq. (7) are periodic and the system will oscillate within
symmetric bounds [�B, B].

We can solve Eq. (7) approximately using the harmonic balance method. To do this, we first write this
equation in a form that does not contain the square-root expression

ð1þ u2Þ
d2u

dt2

� �2

¼ u2. (9)
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Since the restoring force is an odd function of u, the periodic solution u(t) has a Fourier series repre-
sentation which contains only odd multiples of ot. The first-order harmonic balance solution takes the
form [5]

u1ðtÞ ¼ B cos o t. (10)

Observe that u1(t) satisfies the initial conditions, Eq. (8). The angular frequency of the oscillator is o, which is
unknown and to be determined. Both the periodic solution u(t) and frequency o (thus period T ¼ 2p/o)
depend on B. Substituting Eq. (10) into Eq. (9) gives

ð1þ B2cos2 otÞo4B2cos2ot ¼ B2cos2ot. (11)

Expanding and simplifying the above expression gives

1
2
o4 þ 3

8
o4B2 � 1

2
þ 1

2
o4B2 þ 1

2
o4 � 1

2

� �
cos 2otþ 1

8
o4B2 cos 4ot ¼ 0 (12)

and setting the coefficient of the resulting term cos(0ot) (the lowest harmonic) equal to zero gives the first
analytical approximate frequency o1 as a function of B:

o1ðBÞ ¼ 1þ 3
4
B2

� ��1=4
. (13)

In this limit, the present method gives exactly the same frequency [15] as the first-order homotopy perturbation
method [16,17] applied to Eq. (9). The corresponding first analytical approximate periodic solution is given by

u1ðtÞ ¼ B cos½o1ðBÞt�. (14)

The approximate frequency in Eq. (13) is the correct one when the harmonic balance method is applied to
Eq. (11) and not the following frequency obtained by Mickens [4]:

oM ðBÞ ¼ 1þ 1
2
B2

� ��1=4
. (15)

This is due to the fact that Mickens divided Eq. (11) by cos2ot and obtained

ð1þ B2cos2 otÞo4B2 ¼ B2. (16)

It is easy to verify that Eq. (15) can be obtained from Eq. (16). However, oM is not the first-order approximate
frequency of Eq. (9). We can readily see that oM is the first-order approximate frequency of the following
differential equation:

1þ
2

3
u2

� �
d2u

dt2

� �2

¼ u2, (17)

which can be obtained from

d2u

dt2
þ

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2=3Þu2

p ¼ 0. (18)

As we can see, Eq. (18) does not coincide with Eq. (7).
The corresponding approximation to y is obtained from Eq. (6)

y1ðtÞ ¼
u1ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

1ðtÞ
q ¼

B cos o1tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2 cos2o1t

p . (19)

Likewise, x1(t) can be calculated by integrating equation y ¼ dx/dt subject to the restrictions

x1ð0Þ ¼ 0; y1ð0Þ ¼
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2
p , (20)

which can be easily obtained from Eqs. (6) and (7). This integration gives

x1ðtÞ ¼ 1þ
3

4
B2

� �1=4

sin�1
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2
p sin½o1ðBÞt�

" #
. (21)
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In order to apply the next level of harmonic balance method, firstly we express the periodic solution to Eq. (7)
with the assigned conditions in Eq. (8) in the form of [6,7]

u2ðtÞ ¼ u1ðtÞ þ Du1ðtÞ, (22)

where Du1(t) is the correction part. Linearizing the governing Equations (7) and (8) with respect to the
correction Du1(t) at u(t) ¼ u1(t) leads to

�u2
1 � 2u1Du1 þ

d2u1

dt2

� �2

þ u2
1

d2u1

dt2

� �2

þ 2u1
d2u1

dt2

� �2

Du1 þ 2
d2u1

dt2
d2Du1

dt2
þ 2u2

1

d2u1

dt2
d2Du1

dt2
¼ 0 (23)

and

Du1ð0Þ ¼ 0;
dDu1

dt
ð0Þ ¼ 0. (24)

The approximation Du1(t) in Eq. (22), which satisfies the initial conditions in Eq. (24), takes the form [6,7]

Du1 ¼ c1ðcos ot� cos 3otÞ, (25)

where c1 is a constant to be determined.
Substituting Eqs. (10), (22) and (25) into Eq. (23), expanding the expression in a trigonometric series, and

setting the coefficients of the resulting items cos(0ot) and cos(2ot) equal to zero, respectively, yield

�1
2
Bþ 1

2
Bo4 þ 3

8
B3o4 þ o4c1 � B2o4c1 � c1 ¼ 0 (26)

and

�1
2
Bþ 1

2
Bo4 þ 1

2
B3o4 � 8o4c1 �

11
2

B2o4c1 ¼ 0. (27)

From Eq. (26) we can obtain c1 as follows:

c1 ¼
�4Bþ 4Bo4 þ 3B3o4

8ð1� o4 þ B2o4Þ
. (28)

Substituting Eq. (28) into Eq. (27) and solving for the second analytical approximate frequency o2, we obtain

o2ðBÞ ¼
40þ 22B2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256þ 256B2 þ 71B4

p
72þ 92B2 þ 25B4

 !1=4

. (29)

Furthermore, c1 can be obtained by substituting Eq. (29) into Eq. (28) and the result is

c1ðBÞ ¼ �
B½64þ 17B4 � 4Dþ ð80� 3DÞB2�

4½32þ 47B4 � 2Dþ 2ð55þ DÞB2�
, (30)

where

DðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
256þ 256B2 þ 71B4

p
. (31)

The corresponding second analytical approximate periodic solution is given by

u2ðtÞ ¼ ½Bþ c1ðBÞ� cos½o2ðBÞt� � c1 cos½3o2ðBÞt�. (32)

The corresponding approximation to y is

y2ðtÞ ¼
u2ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

2ðtÞ
q ¼

B cos o2tþ c1ðcos o2t� cos 3o2tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½B cos o2tþ c1ðcos o2t� cos 3o2tÞ�

2
p . (33)

However, the analytical integration of Eq. (33) to obtain x2(t) is not possible. To obtain an analytical
expression for x2(t), Eq. (25) is written as follows:

y2ðtÞ ¼
B cos o2tþ 4c1ðcos o2t� cos3 o2tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ½B cos o2tþ 4c1ðcos o2t� cos3o2tÞ�
2

p ¼
Bðcos o2tþ ð4c1=BÞ cos o2t sin2 o2tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2ðcos o2tþ ð4c1=BÞ cos o2tsin2 o2tÞ2
q . (34)



ARTICLE IN PRESS
A. Beléndez et al. / Journal of Sound and Vibration 311 (2008) 1447–1456 1451
The above equation would be easily integrable if (4c1/B) cos o2t sin
2o2t5cos o2t. Then Eq. (34) would have

the same functional form as Eq. (19). From Eqs. (30) and (31) we can obtain the following limits:

lim
B!0

4c1ðBÞ

B
¼ 0, (35)

lim
B!1

4c1ðBÞ

B
¼
�2337þ 4283

ffiffiffiffiffi
71
p

143867þ 13822
ffiffiffiffiffi
71
p ¼ 0:12965. (36)

Then, 4c1(B)/B takes values between 0 and 0.12965 when B varies between 0 and N. For example, for B ¼ 1
and 10, 4c1(B)/B takes the values 0.0424 and 0.1271, respectively. We can write

4c1

B
cos o2tsin

2 o2t

����
����p 0:12965 cos o2tsin2 o2t
�� ��p0:05, (37)

where we have taken into account that the maximum value of |coso2t sin
2o2t| is 0.3849. In Fig. 1 we have

plotted cos (2ph) and cos (2ph)+(4c1/B) cos(2ph) sin2(2ph) as a function of h ¼ o2t/2p ¼ t/T2 for B-N

(4c1/B ¼ 0.12965). From Eqs. (34)–(37) and Fig. 1 we can conclude that Eq. (33) can be approximately written
as follows:

y2ðtÞ �
B cos o2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2 cos2 o2t
p . (38)

Later we will verify that such a simple approximation gives very good results for x(t).
Likewise, x2(t) can be calculated by integrating equation y ¼ dx/dt subject to the restrictions

x2ð0Þ ¼ 0; y2ð0Þ ¼
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2
p (39)

and this integration gives

x2ðtÞ ¼ 1þ
3

4
B2

� �1=4

sin�1
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2
p sin½o2ðBÞt�

" #
. (40)

We will show Eq. (40) gives good results for x2(t).
However, we should not forget what we are really looking for is an approximate analytical solution

to Eq. (1), that is, x(t). Moreover, it is convenient to express the approximate angular frequency and the
solution in terms of oscillation amplitude A rather than as a function of B. It is now necessary to
find a relation between oscillation amplitude A and parameter B used to solve Eq. (7) approximately.
Fig. 1. cos(2ph) (continuous line) and cos(2ph)+0.12965 cos(2ph)sin2(2ph) (dashed line) as a function of h ¼ o2t/2p ¼ t/T2.
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From Eq. (3) we get

1

ð1� y2Þ
1=2
þ

1

2
x2 ¼ C, (41)

where C is a constant to be determined as a function of initial conditions. From Eq. (20) we can easily obtain
C ¼ (1+B2)1/2 and Eq. (41) can be written as follows:

1

ð1� y2Þ
1=2
þ

1

2
x2 ¼ ð1þ B2Þ

1=2. (42)

In addition, when x ¼ A, the velocity y ¼ dx/dt is zero. Taking this into account in Eq. (49), we obtain the
following relation between amplitude A and parameter B:

1þ 1
2
A2 ¼ ð1þ B2Þ

1=2. (43)

From the above equation we can easily find that the solution for B is

B ¼ A 1þ 1
4
A2

� �1=2
. (44)

Substituting Eq. (44) into Eqs. (13) and (21), the first analytical approximate periodic solution for the
relativistic oscillator as a function of the oscillation amplitude A is given by

o1ðAÞ ¼ 1þ 3
4
A2 þ 3

16
A2

� ��1=4
, (45)

x1ðtÞ ¼
1

o1ðAÞ
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2 þ A4

4þ 4A2 þ A4

s
sin½o1ðAÞt�

2
4

3
5. (46)

Substituting Eq. (44) into Eqs. (29) and (40), the second analytical approximate periodic solution for the
relativistic oscillator as a function of the oscillation amplitude A is given by

o2ðAÞ ¼
640þ 352A2 þ 88A4 þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4096þ 4096A2 þ 2160A4 þ 568A6 þ 71A8

p
1152þ 1472A2 þ 768A4 þ 200A6 þ 25A8

 !1=4

, (47)

x2ðtÞ ¼
1

o2ðAÞ
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2 þ A4

4þ 4A2 þ A4

s
sin½o2ðAÞt�

2
4

3
5. (48)

Now we illustrate the applicability, accuracy and effectiveness of the proposed approach by comparing
the approximate analytical periodic solutions obtained in this paper with the exact ones. Calculation of the
exact period frequency, Tex(A), proceeds as follows. Substituting Eq. (44) into Eq. (42) and integrating,
we obtain

T exðAÞ ¼ 4

Z A

0

1þ 1
2
ðA2 � x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � x2 þ 1
4
ðA2 � x2Þ

2
q dx, (49)

which allows us to obtain the exact angular frequency, oex(A), in terms of elliptical integrals as follows:

oexðAÞ ¼
2p

TexðAÞ
¼ 2p 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ A2

p
E

A2

4þ A2

� �
�

8ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ A2

p K
A2

4þ A2

� �" #�1
, (50)

where K(q) and E(q) are the complete elliptic integrals of the first and second kind, respectively, defined as
follows [18]:

KðqÞ ¼

Z 1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þð1� qz2Þ

p ; EðqÞ ¼

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qz2

1� z2

r
dz. (51)
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For small values of the amplitude A it is possible to take into account the following power series expansion of
the angular frequencies

oexðAÞ � 1�
3

16
A2 þ

51

1024
A4 � � � � , (52)

o1ðAÞ � 1�
3

16
A2 þ

42

1024
A4 � � � � , (53)

o2ðAÞ � 1�
3

16
A2 þ

56

1024
A4 � � � � . (54)

These series expansions were carried out using MATHEMATICA. As can be seen, in the expansions of the
angular frequencies o1(A) and o2(A), the first two terms are the same as the first two terms of the equation
obtained in the power-series expansion of the exact angular frequency, oex(A). If we compare the third term in
Eqs. (53) and (54) with the third term in the series expansion of the exact frequency oex(A) (Eq. (52)), we can
see that the third term in the series expansions of o2(A) is more accurate than the third term in the expansion
of o1(A).

For very large values of the amplitude A it is possible to take into account the following power series
expansion of the exact angular frequency:

oexðAÞ �
p
2A
þ � � � ¼

1:5708

A
þ � � � , (55)

o1ðAÞ �
2

31=4A
þ � � � ¼

1:5197

A
þ � � � , (56)

o2ðAÞ �
88þ 8

ffiffiffiffiffi
71
p

25

� �1=4
1

A
þ � � � ¼

1:5790

A
þ � � � . (57)

Once again we can see than o2(A) provides excellent approximations to the exact frequency oex(A) for very
large values of oscillation amplitude. Furthermore, we have the following equations:

lim
A!0

oexðAÞ ¼ lim
A!0

o1ðAÞ ¼ lim
A!0

o2ðAÞ ¼ 1, (58)

lim
A!1

oexðAÞ ¼ lim
A!1

o1ðAÞ ¼ lim
A!1

o2ðAÞ ¼ 0, (59)

lim
A!1

o1ðAÞ

oexðAÞ
¼ 0:96745, (60)

lim
A!1

o2ðAÞ

oexðAÞ
¼ 1:00523. (61)

Eqs. (58)–(61) illustrate the very good agreement of the approximate frequency o2(A) with the exact frequency
oex(A) for small as well as large values of oscillation amplitude. In Fig. 2 we plotted the percentage error of
approximate frequencies o1 and o2, as a function of A. In this figure the percentage errors were calculated
using the following equation:

Relative error of oj ð%Þ ¼ 100
oj � oex

oex

����
����; j ¼ 1; 2. (62)

As we can see from Fig. 2, the relative errors for o1(A) are lower than 0.82% for all the range of values of
amplitude of oscillation A (see Eq. (60)), and these relative errors tend to 0.52% when A tends to infinity (see
Eq. (61)).

The exact periodic solutions x(t) achieved by numerically integrating Eq. (1), and the proposed
first-order approximate periodic solutions x1(t) in Eq. (46) and x2(t) in Eq. (48) are plotted in Figs. 3–6
for A ¼ 0.1, 1, 2 and 10 (B ¼ 0.1001, 1.12, 2.83 and 51), respectively. In these figures parameter h is
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Fig. 2. Relative error for approximate frequencies o1, (Eq. (45), dashed line) and o2 (Eq. (47), continuous line).

Fig. 3. Comparison of the normalized approximate analytical solutions x1/A (m) and x2/A (J) with the exact solution (continuous line)

for A ¼ 0.1 (b0 ¼ v0/c ¼ 0.09963).

Fig. 4. Comparison of the normalized approximate analytical solutions x1/A(m) and x2/A (J) with the exact solution (continuous line) for

A ¼ 1 (b0 ¼ v0/c ¼ 0.74536).

A. Beléndez et al. / Journal of Sound and Vibration 311 (2008) 1447–14561454
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Fig. 5. Comparison of the normalized approximate analytical solutions x1/A (m) and x2/A (J) with the exact solution (continuous line)

A ¼ 2 (b0 ¼ v0/c ¼ 0.94281).

Fig. 6. Comparison of the normalized approximate analytical solutions x1/A (m) and x2/A(J) with the exact solution (continuous line)

A ¼ 10 (b0 ¼ v0/c ¼ 0.99981).

A. Beléndez et al. / Journal of Sound and Vibration 311 (2008) 1447–1456 1455
defined as follows:

h ¼
t

T exðAÞ
¼ 2poexðAÞt. (63)

From Eqs. (20) and (44) we have

b0 ¼
v0

c
¼ yð0Þ ¼

Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2 þ A4

4þ 4A2 þ A4

s
, (64)

where v0 is the maximum velocity of the particle and c is the velocity of light.
Figs. 3–6 show that Eq. (48) provides a good approximation to the exact periodic solutions and that the

approximation considered in Eq. (38) is adequate to obtain the approximate analytical expression of x2(t)
given in Eq. (48). As we can see, for small values of A (Figs. 3 and 4) x(t) is very close to the sine function form
of non-relativistic simple harmonic motion. For higher values of A the curvature becomes more concentrated
at the turning points (x ¼7A). For these values of A, x(t) becomes markedly anharmonic and is almost
straight between the turning points. Only in the vicinity of the turning points, where the magnitude of the
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Hooke’s law force is maximum and the velocity becomes relativistic, is the force effective in changing the
velocity [1]. Fig. 6 are a typical example of the motion in the ultra-relativistic region where b0-1.

In summary, the harmonic balance method was used to obtain two approximate frequencies for the
relativistic oscillator. To do this we rewrite the nonlinear differential equation in a form that does not contain
an irrational expression. We can conclude that the approximate frequencies obtained are valid for the
complete range of oscillation amplitude, including the limiting cases of amplitude approaching zero and
infinity. Excellent agreement of the approximate frequencies with the exact one was demonstrated and
discussed and the discrepancy between the second approximate frequency, o2, and the exact one never exceeds
0.82%. Some examples have been presented to illustrate the excellent accuracy of the approximate analytical
solutions. Finally, we can see that the method considered here is very simple in its principle, and is very easy
to apply.
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